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SPECTRA AND COVARIANCES FOR "CLASSICAL" NONLINEAR SIGNAL

PROCESSING PROBLEMS INVOLVING CLASS A NON-GAUSSIAN NOISE

PART I. ANALYTIC RESULTS AND NUMERICAL EXAMPLES

1. INTRODUCTION

Non-Gaussian noise fields play a critical r6le in modern

signal processing because of the frequently dominant effects of

such noise and interference ia, a wide variety of applications.

Communication theory generally, and specifically telecommunica-

tions, electromagnetic and acoustic scattering, man-made and

natural ambient noise, optics, and underwater acoustics, are

common areas of interest in this respect. In the present rerort

we are concerned primarily with underwater acoustic noise

phenomena, but the models and results are canonical, that is,

they take forms invariant to the particular physical application

in question.

Specifically, we are concerned with various second-order

statistics of non-Gaussian noise processes and fields after they

have been subjected to different types of nonlinear operations,

such as rectification and modulation. A generic problem here is

the passage of non-Gaussian noise through a zero-memory nonlinear

(ZMNL) device. The desired output statistics are typically the

mean (dc), mean intensity (power), the covariance or correlation

function, and the associated spectra. These last include

wavenumber spectra in the case of noise fields, as well as the

more general frequency-wavenumber spectra obtained by joint

temporal and spatial Fourier transformations. Typical "class-

ical" problems include: (i) rectification, (ii) determination of

output spectra and covariances, (iii) calculation of (output)

signal-to-noise ratios, (iv) modulation, (v) demodulation, and

(vi) special systems, as for example, the spectrum analyzer.

These and other problems involving ZMNL devices are described in

detail in [1; chapters 5 and 12 - 17]. What is new here is the

1
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use of the approximate second-order probability density functions

and characteristic functions in the above applications when the

noise processes are non-Gaussian.

A full treatment is given in a current study by Middleton,

[2], which is an expanded version of his recent paper [3], which

employs some of the results of the present report, namely, the

calculated covariances and spectra. Here, we are content to

summarize the pertinent analytic results, the corresponding

examples of calculated covariances and spectra, and the various

computational procedures associated with their evaluation. The

details of the derivations are provided in [2] and [3]. Included

here, also, is a selection of illustrations of the analytic

results.

2. ANALYTICAL RESULTS: A SUMMARY

In the present study, we address three classical problems

where the goals are the calculation of the covariance and

associated intensity spectrum. Specifically, we consider:

Problem I. The half-wave v-th law rectification of Class A

noise fields and processes;

Problem II. Phase modulation of a carrier by a Class A noise

process; and

Problem III. Frequency modulation of a carrier by a Class A

noise process.

Class A noise, as noted in section 3 of [2], [3], is a

canonical form of interference characterized by a coherent

structure vis-A-vis the (linear) front-end stages of a typical

receiver: negligible transients are produced at the output of

these stages. Class B noise, on the other hand, is incoherent

and highly impulsive, such that the front-end stages of the

receiver generate an output which consists solely of (over-

lapping) transients. Here, the Class A models are tractable in

the required second-order distribution and characteristic

functions, whereas the Class B models are not and must

2
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consequently be appropriately approximated in second-order; see

[4] and [5] for additional information. In the present report,

we shall consider examples of Class A noise only.

2.1 THE SECOND-ORDER CLASS A CHARACTERISTIC FUNCTION

In applications [1] - [3], the second-order characteristic

function, F2 (i&1,i&2 ), plays a key rble: from it, we may obtain

the aforementioned statistics of the outputs of ZMNL devices,

spectra of angle-modulated carriers, and other usually second-

order statistics of various nonlinear operations arising in a

variety of communication and measurement operations.

(See [2], [3] for further discussion.)

Here, we specifically use the approximate Class A noise

characteristic function, F2, including an additive Gaussian

component, given by

com l m 2

F2(i& 1 ,i 2 )A G = exp[-A(2-p)] [A(1-p]

m1,m2= 1

X (L p )n exp ~ (2) Q 2 n n(&1 ) 1 (2.1)n0 n! 2 %+n,m2+n( 142)
n-0O

where A (-AA) is the "overlap" index, and where

(2) (& }  2 a 2 + &2 2 + 2&t K( n )  (2.2a)% 1 +n,m 2 + 1 +n 2'm 2 +n 1 2 L+G' "
2 1 1 <2 2m 1 2

. (2A; 22A A<Bo> - A<L2> ' -r 2 (2.2b)°m+n A A22 2AaA G2 ;

K (n) n k /A + k. r 2; (2.2c)
L+G L G) 2A;

and kL, kG are the normalized covariances of the non-Gauss and

Gauss components, respectively. Thus, IkL,GI 1 1.

3
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Here, p (-PA) is the "overlap" correlation function

{I - I'I' for I'I' 1} 1/I
p(t') E , = ,/T , (2.3)

0 for AIT'I > i1

in which T sis the mean duration of a typical noise-signal of

intensity <B >/2 = <L 2>. The time delay T' is given by

00r' =t -c or t' =tr (-t-t) , (2.3a)

respectively, for space-time fields and received temporal

processes. The path delay AR/c0 (= IR2 - R11/co) accounts for
the time differential between propagation paths to the points at

which processing occurs, cf. figure 2.1 ff, Case A. The

quantities 22A and a2 are, respectively, the intensity of the
non-Gaussian and Gaussian components which constitute the general

Class A model used here. (However, we note that the present

Class A model belongs either to the strictly canonical Class A

cases, where all interfering sources are equidistant from the

observer, or more generally, to the much broader class of

situations in which the effective source distribution is

concentrated in an annulus whose inner-to-outer radii have a
ratio 0(1/2) or less. The former is exactly represented by (2.1)

to second-order, while the latter is approximately so

represented, albeit a good approximation as long as the

aforementioned source annulus is not too large. See

[5; section V, C], for example. For an exact treatment, see also

(6], in an important class of physical models. Finally,

differentiation of F2, (2.1), in the usual way, gives us the

(exact) covariance of the composite Class A and Gauss field,

namely,

K 2 F =KA + KG (2.4)A+G 3&1 2 21 ~1 &2no A G

which in normalized form is

4
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kL + r' kG
kA+G(ART) 1 + r' " (2.4a)

In practice, A is usually less than unity, say 0(0.1 - 0.3)
m1 +m2+n

typically, so that only a comparatively few terms in A are

needed for numerical evaluation of (2.1) and the statistical

quantities derived from it, cf. section 2.2 ff. Note that when

PITI k 1, p - 0, and r'= 0, we get

F2A -IA h! exp 1&2a2)1 leA ., exp(- & 2ana)
m=0 n=0

= Fl(i&l)A Fl(i&2 )A , (2.4b)

as expected: there is now no correlation between process samples.

With a Gaussian component, these will be correlated, of course,

unless ITI 4 -, so that k G  0, cf. (2.2c).

2.2 PROBLEM I: HALF-WAVE v-TH LAW RECTIFICATION

(STATIONARY AND HOMOGENEOUS FIELDS)

Here we consider the problem of obtaining the second-order

(second-moment) statistics, My, of a sampled noise field, cx(R,t),

after passage through a ZMNL device, g, when the noise is

generally non-Gaussian. Various processing configurations are

possible. We show two in figure 2.1, below. Analytically, we

have, for stationary and homogeneous inputs [1; section 2.3-2]

M y(RT) - g(x 1 )g(x2 ) - 1 2 f f f(i&l) f(i& 2 )
(2x) C1 C2

x F 2 (t&li& 2 ;&R,T)x d~l d&2 ' yl y2 ,(2.5)

5
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where AR - R 2-R1 1 T = t 2-t1 , and f(iE) is the Fourier transform

of the ZMNL device with y1 - y(R,1 tl), etc. In the present

cases, we have specifically

f~iE) r~v~l/(iE)V+1 26

for these half-wave v-th law rectifiers [1; (2.10la,b)].

SPATIAL SAMPLING - SIGNAL PROCESSING

2-SENSOR ARRAY ZMNL

A.(R
11 t1 +t) y yj(R1  "I AR

B.A V Tt 3 0

a~t "

R

gI x a

X(t2 Wt1+r) y(t1+ft

Figure 2.1 A. Two-point sensor array (R2 giving sampled field

at two space-time points. "B. A general array (R) (preformed

beam), converting the field a(R,t) into a single (time) process

x(tj). Both are followed by ZMNL devices, delays, and averaging,

as indicated schematically.

6
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For the Class A non-Gaussian noise inputs of section 2.1

above, we find that the (normalized) second-moment My for the

resulting rectified field is now

[A( m1 +m2
My(lR,r) = exp[-A(2-p)] [A in! m2 . n

mI,m2=0 n-0

+ ) v/2 ( A + r' )v/2 Bv (2.7)

where we have further postulated the noise field to be isotropic,

AR 4 IARI, and where specifically,

Bl1a-- BV(YIml,m2 n) = r2 (%i 1 
2 Ff 1- 2y

+ 2Ya r 2(j i 2F( , (_ 1v; Y2) ,(2.7a)

n k + r' k
Y 1 a G a - (m11m2 'n) IYaI 1 1

A + - + A' (2.7b)

Specifically, also, we have the following normalized forms

y a M y /22A 2 An; ^' - AT' , P - 1I/T , cf. (2.3)

AR a AR/AL AL - correlation distance, AR = IR2-R1 1 • (2.8)

For numerical results, we select the following models for the

space-time covariance functions of the isotropic and stationary

non-Gaussian and Gaussian components of the input noise field:

kL-* exp(-AR2/d2 - l.(AoL2'/ )2 ) exp(-A^2 - 1(A^Lf')2) ; (2.9a)

kG exp-AR2/ 2 -L 2(Awct,'/A) 2) exp(-R 2 (L/G) 2 - ( )

7
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L M L , L / WG/A (2.9b)

Here, AG is a correlation distance, and Aw L' AwG are angular

frequency spreads associated with the respective non-Gaussian and

Gaussian components of the input field. Note that if we define

the correlation distance AL as that where kL = 1/e (' -)

then A L - ARL' etc.
For the special cases of v considered here, we also observe

(from [1; (A.1-39)]) that B may be expressed in clced form:

B0 (Y) - n + 2 arcsin(Y) , (2.10a)

B1 (Y) - Y arcsin(Y) + (1 - Y + (2.10b)

B2 (Y) [ + y2)(, + arcsin(Y)) + I Y (2.10c)

2.2-1 GAUSS PROCESSES ALONE (A=0)

When only a Gauss noise field is originally present, that is,

A - 0, for example, 2 2A m 0, (2.7) reduces to the classical

result [1; page 541, (13.4a)]:

MyEMy A BI0 H My ; Y Yo k (2.11)

y y~A0 vaO y 41 y aI

For comparison with the non-Gaussian cases (A>O), we choose to

have equal input noise intensities. This means that

Au.0 "G2 + 2 2A 2A 1 +')

so that

MyIA=0 - (1 + r')v Bv a-0 ' Yo M k G (2.12)

A A

and M' is then to be compared with My, A > 0. When r' is small,
as is usually the case, we can often replace (1 + r')V by unity.

8
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At this point, following figure 2.1, we distinguish two

classes of operation: (A), where a pair of point sensors is used

to sample the noise field and we wish t, consider both the space

and temporal correlations of the sampled field at the two points

(Rl,tl), (R2 1t2 ); and (B), where the space-time field is

converted into a random process, x(t), by the beamforming array

(R), with an associated directionality embodied in the resultant

beam (vide [7; sections IV B and VI A]).

2.2-2 CASE B, FIGURE 2.1

Let us consider the simpler case (Case B) of the time process

first, cf. (B). For this, we set AR = 0 formally in (2.7) et

seq. above, since x = R a(R,t) here and r' = r - t 2 -t1 , cf.

(2.3a). See also [3; (3.2) et seq. and (3.11a)]. Then our ad

hoc illustrative models of the process covariances kL, kG , are,

from (2.9a,b), at once

kL = kL(t) - exp(- (&oLf/,) 2 ) - exp(- 2(awLf) 2) , (2.13a)

kG- kG(T) - exp(- ( G=/,) 2 ) exp-( I(AG) 2J . (2.13b)

Accordingly, (2.7) reduces to

Case B: My (0,j) a My(f)B - (2.7), with Ya - (2.7b),

and (2.13a,b) and AR - 0 therein. (2.14)
A

We note that when IfI 1 1, p = 0, and My (O,Ifl I 1) reduces to a

simpler relation (vis-&-vis (2.7)], viz.:

A physically derived model of kG and kL may be made from

A A

[3; (3.11a)] with L - R L, R - (2.9) etc., where L is typically

given by [3; (3.3)], for example.

9
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e- 2 AA 2  v/2 v12
iny! 2)B + r'I +- r' aB '

m1 ,m2-O

(2.A a)

where (2.7b) becomes

r' k Gr' =k[G = U (2.14b)

r, ) 'J [m2 + r_)A A
in B l.

Special cases of interest are:

I. THE INTENSITY E(y2): = 0, p - 1, mI1  M 2 - 0, and (2.7),

(2.14) reduce to

Ynorm M y( 0)B My(00 B amn _. n!'

(2.15)

where now Ya-n - 1, e.g., kL(O) 1 1 etc., and B is independent

of n, for example, for Ya = 1,

2n for v 0

Bla-nw for v 1 , cf. (2.10) • (2.16a)

13n/2 for v 2J

For general v, Ya - 1, we have (from [1; (A.1-34)])

Bvlawn - 21r(v+ ) , k > 0 . (2.16b)

Thus, (2.15) becomes

'norU - My(0B - My(0,0) - 2nr(v+h) e-A . + r')
n-0 (2.17)

10
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The unnormalized form is, from (2.8),

-2 My(O)B - My(O,0) = 2 V- - H (A,r') (2.18)

with

H(V)(Arr) a eA An (1 + r')v
n=0

1 for v - 0 , (2.18a)

1 + r' for v - 1 , (2.18b)

1/A + (1+r') 2  for v - 2 . (2.18c)

For other values of v (>0), we must evaluate H(v) numerically.

II. THE MEAN VALUE, y; Mf I -

Now p - 0, n - 0, Ya = 0, and (2.7) reduces directly, upon

use of (2.18), to

yy) = = e-A + r,

-r
2 ( i1) H~v/2)(A,rl)2

(2.19)

The unnormalized form of (2.19) is, from (2.8),

2 2V 2 2A
y My()B - My(0,) 2 2 L 1) H (v (A,r') , (2.20)

and for v even, we find, from (2.18a,b,c)

(0), 1 A + (1 + r' . (2.21)
H i H1 1
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III. THE CONTINUUM INTENSITY: y -2

From (2.18) and (2.20) we get at once the general result

for v 1 0,

P2- 2{ r2]

which is the generalization of fl; (13.7)], in the classical

purely Gaussian cases, to the present, dominant non-Gaussian

noise component 22A ( 2 2 In these classical cases, we can

show at once that

lim H~v) 2v lim e An . 2 + . _ . v ( ,v) , (2.23)2A+0  1 2A 2-*1i 0 n!- A oG  G  (=,( .3

22A4 n=0

where 22A 4 - implies A 4 0 and B2 4 0, cf. (2.2b), so that

(2.22) becomes, as expected,

P WGauss 2 v - 4} (> 0) , 2 0 . (2.24)

Figure 13.5 of [1] shows (2.24) as a function of rectifier

law (v), as well as (2.18), (2.20) in these Gaussian cases. In

the present, more general, situation of Class A noise, the

results are more complex, as expected, with now two additional

parameters (A,r'), descriptive of this much broader class of

interference.

12
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2.2-3: CASE A, FIGURE 2.1

We turn now to the more general problem of the covariance of

the Class A non-Gaussian random field, sampled according to

procedure (A), shown schematically in figure 2.1 earlier. Here,

x - a(R,t), sensed at (R,tl), (R2 ,t2), where L - L, cf. (3.3) in

[3; (3.2)]. Equation (2.7) applies here, with AR P 0 (as well as

for AR - 0), and we use (2.9a,b) for our illustrative examples,

which are discussed in section 3 following. At this point, we

recall from (2.3a) that the proper time delay to use is

r' - T - AR/c0 in p - p(r'), and in some of the structural

elements of the noise field covariances, cf. [3; (3.11b,c)].

CASE I: f' - 0

From (2.7), we have p - 1, m1 = m2 = 1, giving

M(R,O) - e-A + ')" B 1 R- (2-25)
n-0o 0

where (2.7b) is specifically

A kL( RO) + r' kAROl

Y a-n n (2.25a)

For calculations, (2.9a,b) are used, with B given by (2.7a),

where (2.25a) provides Ya" When AR - 0, (2.25) reduces to (2.15)

et seq. for the total intensity of the field observed at R - R2.

13
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CASE II: AR =, It'I > 1

When tR 4 =, we obtain different results, depending on T'.

Here p - 0, Y a 0, cf. (2.9a,b) in (2.7b), and therefore n - 0.

Accordingly, (2.7) becomes

2

y (c,Ir 0 > 1) = =(aO) =H (0,-) - Y (2.19) . (2.26)
y y y norm

The fact that AR 4 ensures that Ya 4 0, a behavior similar to

that for Case (B) above, when we consider the purely Gaussian

noise process, section 2.2-1.

CASE III: AR 4 -, 0 < IT'I < 1

Here, p > 0 while 4 0, so that By, (2.7b), becomes r2(v+ )

once more. The second moment function (2.7) is now

ODm 1+m 2
M (AR,T') - r -(-4.) exp[-A(2-p)] M I
y mE 2 0 1 . m2

x L (n!mi + r) v/2 (~i + r,) ' 2  (2.27)

n-0

which is a minor simplification of (2.7).

CASE IV: AR 4 iTl - 0

In this special situation, where T - AR/c0 4 in such a way

that T' - 0 and therefore p - 1, Ya M 0, we obtain directly from

(2.27) the comparatively simple result,

M~~O r r(vj-i) H(V) (> 0). (2.28)

14
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2.2-4: REMARKS

At first glance, as AR 4 -, we might expect My always to

reduce to j 2, e., Ky = My - = 0 for the covariance of the

rectified space-time field. This is expectedly the case for the

covariance (and second-moment) function of the input Class A and

Gauss noise field components a(R,t), as we can see directly from

(2.9a,b), or from [3; (3.1lb,c)] for example, in the physically

derived cases. However, the process or field y - g(x) here is

the result of a nonlinear operation, cf. (2.5), (2.6), which

severely distorts the input waveform and generates all kinds of

modulation products, associated with the spatial as well as the

temporal variations of the input field. This accounts for the

departures in Cases III, IV of My ( ,') from -2, while certainly

Mx ( ,r') i2 _ 0, (since x = 0 initially here).

From the various limiting results above, we see that

M y(0,0) > y(,0) and My (0,0) > M y(O,o) , (2.29a)

and

My(0,O) aMy(0,-) depending on A, r', and v , (2.29b)

with

My (0,0) - My (O,) > 0 , cf. (2.19) and (2,20) , (2.29c)

2
M1y (OI) = y (0,-) - y , cf. (2.20) and (2.26) , (2.29d)

whereas

2
M x(0,0) > M x(0,-) - Mx(D,0) - x - 0 . (2.29e)

Finally, we note that (2.11), (2.12) apply here, also, for

the Gauss-alone cases, where now

2A(l + r') 4 a and B (1 + r,) V Bla 0

15



TR 8887

2.2-5: SPECTRA

The various intensity spectra associated with the output of

the processor (cf. figure 2.1) are important also, as they show

how the energy in this output is distributed. Here, we consider

two types of spectra, respectively, for the rectified spatial

field (A) and for the process (B), namely the wavenumber and the

frequency spectrum of y(R,O) and y(O,t). In particular,

wavenumber spectra are useful in the analysis of spatially

distributed phenomena, paralleling the analysis of time-dependent

phenomena.

I: WAVENUMBER SPECTRUM

The wavenumber intensity spectrum is defined here by

W2(k,0)y - W2 (kT)yT=i0  J jj My(AR,O) exp(ik-AR) d(AR) (2.30a)
AR

= 2n f My (R,O) J0 (kAR) AR d(AR) = W2 (k,O) y (2.30b)

0

with

k = (k x,k) , AR - AR , k - [k[ (2.30c)

for these isotropic fields, where k is an (angular) vector

wavenumber. Using the normalization of (2.8), we get, with

k m kAL,

W2 (kO)y a W2 (k'0)Y = f My (XO) J0 (x) x dx (2.31)
AL 2  2  2 4 n  0aL 0

for the normalized wavenumber intensity spectrum.

16
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A

Since M (W,O) is nonvanishing, cf. (2.28), there is a dc
component, or 6-function, in the general wavenumber spectrum.

We will use the relations

Sx Jo(kx) dx 4 6(A A 0) , + - kJ , k - (k,+)
0 k y

(2.32)

A
where we must remember that k is two-dimensional. With v a

vector wavenumber defined by

A

k - 2ni [- ( , )] , k = 2n = 2njj , (2.33a)

and using the relation

6(ax - b) 6 8(x - for a > 0 , (2.33b)

we also show that

6(k - = -- 6(k-0) 3 6(i-0)6(kx-) -0) 0) ^ 32x)2nk (2n)

1 6(i -0) 6(-3 -0) - [i2 + ( f2 (2.34
(2n)2  y,+ 1 • (2.34)

Applying (2.32) - (2.34), with

A I ( A) A 1
W2(k,+) y - 2n J x J0 lkX) M y(x,0) - My(40,0) dx

0

+ 2n yM ,) x J0 (kx) dx (2.35a)

0

A AA
W2(kO)ycont + (2n)2  (-,0) o(Kx-0) o( -0)

SA A
- W2(,0)ycont + M y(,0) 6(0 x-0) 6( Y-0) (2.35b)

17
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which defines W2(k,O) y-cont' the continuous portion of the

inAspectrum and shows the dc term ink- or 'c-space, as convenient.

it is 2cotwith which we are concerned in the specific

numerical examples of section 3 ff.

II. FREQUENCY SPECTRUM

Here we employ the Wiener-Khintchine theorem [1; (3.42)) to

write for the frequency spectrum of y

(f) - 2 J c M y(0it) exp(-iwt) dt - B 0 f My(Oif) cos(af) df,(2.36)

where

A

B ru2 2 V/fl; f - PT; w - 2nf; W ~/o; :f - f/p. (2.36a)

Accordingly, we define the normalized frequency intensity

spectrum of y as

W yf) a*W (f)/B 0 M y (O0j) cos(C~f) df .(2.37)

0

A -
Again, there is a dc component, since MH (0,) - y (> 0),

cf. (2.20). We have

0

since

jcos(wx) dx - n 6(w-0) - 6(f-0)

0

i8
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As in the wavenumber cases above (Case I), we are concerned with

the continuous part of the spectrum, viz.

A cc A -2

Wy(f) cont f [ My (0,f) - I cos(i)d ,(2.39)
0

which is also illustrated numerically in section 3 ff.

III. WAVENUMBER FREQUENCY SPECTRUM

The wavenumber frequency spectrum is defined by

W2 (k,w) y = f My(AR,T) exp(ik-AR-iwr) d(AR) dr , (2.40)

with w - 2nf. The associated wavenumber spectrum W2 (k,0) used in

(2.30) is obtained from W2 (k,t)ir.0. In normalized form, we have

for (2.40), in these isotropic cases,

W2 (k' )y -( 2 ) 2 2A A/(4no))1 W2 (kw) y

M y ARr) exp(ik-AR-iof) d(AR) df

W2lk,6) y - 2n fJ M (X,f) J0(kx) exp(-iCaf) x dx df ( (2.41)
0 0

The various dc components are readily extracted, as in Cases I

and II above. Numerical examples of this joint intensity

spectrum are reserved to a possible subsequent study. The

results of section 3 show the marginal spectra (Cases I, II) of

this more general situation.

19
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2.2-6: FREQUENCY AND PHASE MODULATION
BY CLASS A AND GAUSSIAN NOISE

This is a Case (B) situation, cf. figure 2.1, where AR - 0

and we are concerned only with the received (non-Gaussian) noise

process which is used to angle-modulate a (high frequency)

carrier fo. For the analysis, see [3; section II].

The general result for the covariance of the carrier

modulated by Class A and Gauss noise is found to be

Ky(T)A+ A2 Re exp iWor - D 2 ()G - A(2-p)

+ 2A(1-p) exp -D22o/A)I (2.42)

where now, cf. [1; (4.2),(14.14c)],

) = G or 2A) I (ITI-X) k(X) dX (Do - DF)
AIFM 0

or Ar 2 - cos(W} df (2.42a)o f oL

Also, cf. (1; (14.2), (14.14c)],

2(T - a or 12A (k(0) - k(T)llG or L) (Do = Dp) (2.42b)

A PM

and

2 0 4 jFM -JoWA(f) df/w 2  or 2oIPH 2 2A (2.42c)
0

20
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For our numerical examples, we use the RC-spectrum of

[1; section 14.1-3], where now

kL() - exp(-bj~I) kG(Z) - exp(-RIt.) ' - T wN' (2.43)

and therefore

FM: D (tA ( PFA [exp(-bj~) + b[I[- 1] ;

F2D ()G 2 2'(T)A [exp(-RIJ) + RIt- 1]

VF A - 2A D/tw ; (2.44a)

PM: D2 2(TA _Pp [1 - exp(-blI)] ;

D2 2(TlG - r' ( )A [1 - exp(-bjI)] ;

D 2 () 2

( IJ)A - Dp 22A (2.44b)

with b (> 0) a dimensionless quantity, as is <. The quantity

AwN is the bandwidth of the modulating (Gauss) noise, cf.

(2.43). Note, also, that

2 . a2D2/2 2 (2f ( P2~ 2 D2 (2 (.5rF A DF/bN G FFG 'rN L (A= c, D= G P 2G.5
2

The quantities ('Fp}() are the respective modulation indexes for

FM and PM, cf. [1; chapter 14].

Finally, we have for p in (2.3), now with AR - 0,

1 - LLN for P1
AwN Aw

PM -P4)0 for N > J (2.46)

21



TR 8887

Putting the above (2.43), (2.44) in (2.42), we now specialize

our results,
K( 12

K )A+ 1AO ko(r) coS(W T) , with k (0) - 1 , (2.47)

to the normalized covariance k0 (T), respectively, for FM and PM,

and their associated spectra. We have for these carriers

modulated by a sum of Gaussian and Class A noise:

I. FREQUENCY MODULATION

FM- exp[-r, (P2 [exp(-I) + jij- 1] - A(2-p)ko(')FM F

+ Ap exp 1 (P2 [exp(-bj~I) + bICI - 11)] , (2.48)

with p(t) given by (2.46). Here, 2oIFM 4 w in (2.42). Since

lim ko( )FM - 0

there is no dc in koFM, and hence all the original carrier power

(-A2/2) is distributed into the sideband continuum for this0

highly nonlinear modulation, as expected [1; section 14.1-2].

The associated intensity spectrum for koIFM is defined by

W(C)A+GIFM - ko(')FM cos(Cq,) dC , L -o (2.491

0

which is determined by a direct cosine transform of ko(r')FM. See

appendix A.6 ff.
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II. PHASE MODULATION

k tpM- expl-r 1 2) (1 - exp(-J J)] +2A(l-p) exp(_ _1(.2l

-A(2-p) + Ap exp(-~~A[ exp(-bjij)])

(2.50)

with p(Z) again given by (2.46). We note that

k o(0 )PM - 1 , (2.51a)

as before; that is, the total (normalized) intensity is unity.

Also

ko~P exp[r(r) 2 - exp(- .1(fl) 2 (2.51b)

this is the fraction of the power remaining in the carrier, so

that

ko0(O)pM - ko(-)PM -1 - (2.51b) ,(2.51c)

which is the fraction of the Power distributed in the sideband

continuum.

The associated intensity spectrum of the sideband continuum

is determined from

w(ra)A+GIPM-cont f I' [k 0 r')P k k0e)PMI cos(Ca) d4~ (2.52)

0

See sec-..ion 3 ff. for examples and appendix A.5 for the
evaluation methods.
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Finally, in the equivalent Gaussian cases (Gauss noise

modulation of equal intensity and basic spectrum, e.g.,

r' 4 , -r' P2 (1 + r') and kG kL

we see that (2.48), (2.50) reduce to

FMGusk exp[(A2P) , r' [exp(-bICj) + bICI -1]/b 
2]

( fA2 - (1 + r') (P2l (2.53a)

k()pGas - exp [+2~) r' (1 -exp(-blkI)]]

( )A-(1 + r')(,[)P2 (2.53b)

with spectra obtained as before, from (2.49) and (2.52).
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3. NUMERICAL ILLUSTRATIONS AND DISCUSSION

It is convenient to discuss the general results, namely the

effects of (ZMNL) nonlinear rectifiers on, and modulation by, a

mixture of Gaussian and non-Gaussian noise processes and fields,

from the specific numerical calculations presented here in

figures 3.1 - 3.10. These constitute a representative selection

from the universe of possible parameter states [cf. "Summary of

Normalized Parameters" and section 2, preceding]. This is done

here on a per-figure basis, as noted below. In each case, the

dc component is removed: only the covariance or continuous

spectrum is calculated. We recall that there are two cases to

distinguish: Case A, T'=r-AR/co, a 2-element array; and Cabe Z,

T'r=t 2-tl , a preformed beam. See figure 2.1 and (2.3a).

All spectra shown here are normalized to have area (under the

spectrum level) of unity, i.e., the spectral normalization is

obtained by dividing the spectrum by the value of the associated

covariance at its origin. The normalization of the covariances

themselves is obtained by dividing by the value at f-0 or CR=0.

I. GAUSS NOISE ALONE

FIGURE 3.1

This figure shows the normalized temporal covariance (AR=O)

for both the input and output of a ZMNL half-wave v-th law (vO)

detector, when v - 0,1,2 and when only Gaussian noise (A-0) is

applied to these nonlinear devices. These curves are based on

(2.11) with (2.7a), where Ya = kG' (2.96), with &CG a wG/A - 5

here. The normalization is with respect to the covariance

maximum; e.g., the normalized covariance shown in figure 3.1 is

obtained from [(2.11)/(2.11)f-0], AR=0. These results apply for

both cases A,B of figure 2.1, where now fD-f, since AR-0, cf.

(2.3a) and remarks.
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As expected (cf. [1; chapter 13]), the general nonlinearity

(2.6), vZO, contracts the covariance, which is equivalent to

spreading the spectrum vis-&-vis the input , cf. figure 3.2,

below. Moreover, the greater the distortion (v-0,2), usually the

greater are these effects. [See appendix A.1.]

FIGURE 3.2

This is the same situation as shown in figure 3.1, except

that the normalized intensity (frequency) spectrum is calculated

now [cf. section 2.2-5, Case II, (2.39)] with My (O,f), (2.11),

used in (2.39). Observe the greatly broadened spectra,

particularly at the low spectral levels, where the greater spread

occurs for the "super-clipper", v=O, cf. remarks, figure 3.1;

also, appendix A.3.

FIGURE 3.3

For the same purely Gaussian field above, cf. (2.11) and

(2.96), with ff'-0, the spatial covariance is calculated, with

parameters AL/AG ' 5h, using (2.11) as before. The normalization

is with respect to the covariance at AR-O. Again, one observes

the same kind of contraction in the covariance as noted in figure

3.1. [See appendix A.2.]

FIGURE 3.4

This is the wavenumber analogue of the frequency spectrum of

figure 3.2, now with ',f1-0, and is obtained from (2.35a,b) with

aL/AG - 5 . The rectification operation similarly spreads the

wavenumber spectrum, with the greatest distortion (v-0) yielding

the greatest wavenumber spread, as expected from the

corresponding contraction of the associated covariance, cf.

figure 3.3 above. [See appendix A.4.]
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CLASS A PLUS GAUSS NOISE

FIGURE 3.5

The temporal covariance here is given by the general result

(2.7), with the associated relations (2.7), (2.8), (2.9), wherein

AR-O, so that f-f'-t 2-tl, as before, and where B la, (2.7a), is

now given analytically by (2.10) for v - 0,1,2. Here, the

parameter values are A G a G~ /A- 5h, as before, now with A-0.2,

r,-I0-3, AwL/f a AC L - 1 for the Class A non-Gaussian noiseAL
component, typically.

Again, for the super-clipper (v-0), the contraction in the

normalized covariance is greatest, cf. figure 3.1. But the

contribution of the comparatively strong non-Gaussian component

exaggerates this effect. [See appendix A.1.]

FIGURE 3.6

The corresponding intensity (frequency) spectrum (AR=0),

obtained from (2.7) in (2.39), however, shows a fine-structure

not exhibited when Gauss noise alone (A-0) is applied to these

ZMNL devices. The spectral levels for the case v-0, (A-0) and

(A>0), cf. figure 3.2 with figure 3.6, are approximately the

same, whereas the other inputs, cases v-1,2, are much elevated as

f becomes larger, again due to the presence of the structured

Class A noise, when fTs 1 1, cf. (2.3): on the average, the

original Class A "signals" are of comparatively short duration,

or spectrally wide to begin with, so that clipping further

spreads the spectrum. [See appendix A.3.]

FIGURE 3.7

The spatial covariance when Class A noise is added to the

Gaussian input shows analogous behavior, cf. figures 3.3 and 3.5:

the covariance is compressed vis-&-vis the input, but more so

than in the Gauss-alone situations. Again, (2.7) - (2.10) are

employed. [See appendix A.2.]
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FIGURE 3.8

The corresponding wavenumber (intensity) spectrum with Class

A noise and the Gaussian component, obtained from (2.7) - (2.10)

in (2.39), is shown here. Comparison with figure 3.4 indicates a

broader spectral input, due to the non-Gaussian component, but a

relatively narrower output, although the latter is still

noticeably spread vis-A-vis the original input. [See appendix

A.4.i

FIGURE 3.9

Finally, we consider the angle-modulation cases described in

section 2.2-6 above, where weak to strong angle modulations

( - 1 to 50) by Class A noise, with a weak (r'=0 -3 ) Gaussian

modulation component, is employed.

For phase modulation by non-Gaussian noise, based on (2.50)

with (2.44b), (2.45), (2.46), the resulting normalized intensity

(frequency) spectra are obtained by applying (2.50) to (2.52),

where f - 63/2n; 6 - (w-w 0 )/AwN, cf. (2.49). Note the "spike" at

f - 0.1, followed by a variety of sidelobes which rise as the

phase modulation index pp increases. The spike is now bounded at
f - 0.8, at the -10 dB level, when pp - 50. As expected, the

larger indexes (p) produce broader spectra. [See appendix A.5.]

FIGURE 3.10

For frequency modulation by non-Gaussian noise, from (2.48)

with (2.49) and (2.44a), the corresponding intensity (freqtency)

spectra again exhibit a continuous spike (f < 0.1). With small

modulation indexes (PF), the spectra are less broad than for the

larger indexes, as expected. The non-Gaussian noise component

dominates the spectrum here. [See appendix A.6.]
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EXTENSIONS

Other situations where the second-order Class A probability

density functions may be applied are noted in [2] and (3]. We

list some of the extensions of the analysis to the following
"classical" problems:

1) The inclusion of representative signals, with Gauss and

non-Gauss (Class A) noise, in the problems already treated

here (section 2);

2) The case of the full-wave square-law rectifier, with both

Class A and B noise, as well as Gauss noise;

3) The extension of 2) to include general broadband and

narrowband signals;

4) The calculation of signal-to-noise ratios and deflection

criteria, cf. [1; section 5.3-4].

5) Covariances and spectra for ZMNL system outputs, with

signals as well as non-Gaussian noise inputs;

6) The r6le of the electromagnetic (or acoustic) interference

(EMI or AcI) scenario, cf. [5; section 2B,5];

7) Evaluation of the large (FM,PM) indexes, or asymptotically

Gaussian cases, cf. [12].

Further opportunities to extend the classical theory [2],[3],

now with non-Gaussian noise inputs, are evident from the examples

and methods described in [1; chapters 5, 12 - 16], for instance.
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FIGURE 3.1 TEMPORAL COVARIANCE (FOR AR-O); GAUSS NOISE ONLY;

CF. (2.11) WITH (2.7a), (2.9b), AND APPENDIX A.1
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NOISE ONLY; CF. (2.39), USED WITH (2.11), AND APPENDIX A.3
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FIGURE 3.10a FREQUENCY MODULATION (INTENSITY) SPECTRUM

FOR INDEX PFinl,2 ,5 , CLASS A AND GAUSS NOISE;

CF. (2.48) WITH (2.49), (2.44a), AND APPENDIX A.6
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PART II. MATHEMATICAL AND COMPUTATIONAL PROCEDURES

4. SOME PROPERTIES OF THE COVARIANCE FUNCTION

In this section, we collect some useful relations for the

covariance and auxiliary functions encountered in the numerical

evaluation. These are necessary for rapid computation of the

multiple series involved here and also serve as checks on the

numerical procedures employed.

4.1 SIMPLIFICATION AND EVALUATION OF B (Y)

The function B (Y) is defined by the following combination of

hypergeometric functions:

B (Y) - r 2 (y+ 1) F(- - ; +
(1 2 2

2(j +_1)___ 1-v 3 i for y2 r[ 12 .fYo (4.1)

For the upper F function in (4.1), we have (1; (A.1.39b)]

v 0, F(O, 0; 1~; Y 2) = 1;

v - 1, +( Y~j -; .
2) - Yz arcsin(Y) + 1- Y )

v - 2, F (-1, -1; 1; Y 2) - 1 + 2Y2 ;(4.2)

where arcsin is the principal value inverse sine function. On

the other hand, for the latter F function in (4.1), we have

(1; (A.1.39a) and (A.1.39c)]
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S= 0, F( , .1; 2; = arcsin(Y)

= 1, F(0, 0; .2; Y2) = 1

1,F 1, 3; ; Y2 { Y21 1 + 2y 2

v = 2 - 2 Y = - + 4Y arcsin(Y). (4.3)

When these quantities are substituted in the above expression

for B (Y), we find the following relatively simple relations:

B0 (Y) = n + 2 arcsin(Y) ,

B 1 (Y) = Y arcsin(Y) + (1 - Y2 +

~2) 2

B 2 (Y) ( + y2)(! + arcsin(Y)) + Y( Y2) (44)

These three quantities can be computed simultaneously by the

following very compact computer coding in BASIC:

Y2=Y*Y
Sq=SQR(1.-Y2)
TfASN(Y)+1.5707963267948966
BO=T+T
Bl=Y*T+Sq
B2=(.5+Y2)*T+1.5*Y*Sq (4.5)

Thus, the rather formidable expression, above, for B (Y) can be

evaluated by the use of just one square root and one arcsin when

S= 0, 1, 2.

The following limiting values, which are obvious, are needed

for various special cases:
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B0 (O) - n , B0 (l) - 2n

B1 (0) = 1 , B1 (1) = Rt

B2 (0) = n/4 , B2 (l) = 3R/2

B3 (0) - 1 , B3 (l) = 15n/4

B4 (0) = 9n/16 , B4 (l) = 105n/8 . (4.6)

These are special cases of

B (o) = r2 (v + 1) (4.7)

B (1) = 2 0 r(v + (4.8)

the latter following from [10; (15.1.20)].

4.2 LIMITING VALUES OF THE COVARIANCE FUNCTION

The covariance function at normalized separation AR and

delay f is given by (2.7) as

cc- m +m2
M (AR,f) - exp(-A(2-p)] [A(M - M}1

m1=0 m2=0

~n n i 1  
1v,/2 +1v/2

A + A + B (Y) , (4.9)

n=0

where

p = p(f) max[o, 1 - IfI! • (4.10)

n

Y - Y(m, 2 n) x (nAL + kG (4.11)

+ r' +m 2 + '
A All A  +4
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-2 _1 1(AwL) 2 f 21
kL =kL(AR,fl) - exp -AR 7- J (4.12)

kG - kG(6R,f) = exp (A 2 G 1- 2 . (4.13)

The functions p, kL, kG can be replaced by other functional

dependencies, if desired. The function B (Y) has been

considered earlier and considerably simplified for v = 0, 1, 2.

4.3 VALUE AT INFINITY

As AR or f +, then

p 4 0, kL 4 0, kG 4 0, Y 4 0 . (4.14)

(If Ijf remains less than 1 as R tends to infinity, then p does
not approach zero; this nuance has been discussed elsewhere in

this report.) Then, it follows that

M(A m M+ jv/2 v/2

My 4 exp(-2A)j iJ m I- - + r'lv B (0)
m1= T M I= ! 2 AJ A A) vm 1 0 M 2 0

-B (0) exp(-A) rm ) + r 12 (4.15)
m-0

because the sum on n can be terminated with the n - 0 term.

The sum on m can be effected in closed form, for v - 0, 2, 4,

etc., by using the following results:

- exp(A) , (4.16)

m-0
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tAmm t AmM (m 1) A exp (A) (4.17)
m=O m=l

Am2 + Am (m - 1 + 1)
M=O rn-I

= (m - 2) F 1)m )! (A + A) exp(A) . (4.18)
m=2 m=l

There follows

ifor v = 0

A =2
M( n ( + r,) for v =2 (4.19)

9n 11 + (1 + r,212  for v = 4

The case for v - 1 requires a numerical summation, once A and

r' are specified. When these limiting values are subtracted from

the correlation function, we obtain the covariance function.
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4.4 VALUE AT THE ORIGIN

For AR = 0, f = 0, then

p - 1, kL = 1, kG =1 , (4.20)

and

M (0,0) = exp(-A) + r' n! + rA V

n=0

because the sums on m1 and m2 can be terminated with the zero

terms, thereby also leading to Y = 1.

The sum on n can be accomplished in closed form, for

V 0, 1, 2, etc., by using results given earlier. There follows

'2n for v = 0

My (0,0)= n1 + r ) for v = 1 (4.22)

3 [!+ (1+ r,1 for v = 2
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PART III. APPENDICES AND PROGRAMS

APPENDIX A.1 - EVALUATION OF COVARIANCE FUNCTION

FOR ZERO SEPARATION (AR - 0)

A program for the numerical evaluation of covariance

My (AR,f) for AR - 0 is contained in this appendix. Inputs

required of the user are A, r, (AWL/0)2, 2, 6(f), N(f),

in lines 20 - 70. Since we are generally interested in values of

A less than 1, the series for Ay in (4.9) will not have to be

taken to very large values of m 1, m 2 , n; accordingly, the values
of JAk/k!U are tabulat.ed once in lines 260 - 300 with a tolerance

of 1E-10 set in line 80.

The values of the covariance at infinity, as given by (4.19),

are computed and subtracted in lines 220 - 240 and 400 - 420;

this is in anticipation of taking a Fourier transform of a

covariance function which decays to zero for large arguments AR.

The functions BV(Y) and MA(AR,f) are available in the two

subroutines starting at lines 1010 and 1120, respectively. The

latter subroutine actually calculates the covariance at general

nonzero values of both AR and f, although we only employ it for

AR - 0 in this appendix; see lines 10 and 380. Also, for AR - 0,

the parameter Lg2 - (AL/AG)2 is not relevant and, hence, is

entered as zero in line 380.

The exponential Gaussian forms for kL and kG are used in

lines 1200 and 1210, while the triangular form for p is entered

in line 1240. Any of these can be replaced, if desired, by forms

more appropriate to the user.

The program is written in BASIC for the Hewlett Packard 9000

Computer Model 520. The designation DOUBLE denotes integer

variables, not double precision. The output from the program is

stored in data files AOTO, AOT1, AOT2, for v - 0, 1, 2,

respectively.
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1O Rc=O. I De1R-
20 A=.2 1 A(subA)
30 Gp=.001 i CAMMA'(subA)
40 Wlb2=1. (De1W(SUbL)/Beta)-'2
50 Wgb2=25. ! DelW(subG)/Beta)A2
60 Dtc=.01 i INCREMENT IN Tau-
70 Ntc=200 NUMBER OF Tau^ VALUES
80 TolerancelI.E-10
90 COM AC(0:40),C(0:80),Sq(0:80)
100 CON DOUBLE 3 I INTEGER
110 DIM Kag(200),Tc(0:200),F0(0:200),F1(0:200),F2(0:200)
120 DOUBLE Ntc.,K IINTEGERS
130 FOR K=0 TO Ntc
140 TcinK*Dtc Tau-
150 Rho=MAXCO.,1.-ABS(Tc)) IRho
160 T2=.5*Tc*Tc
170 V1=EXP(-Wlb2*T2)
180 Kg=EXP(-Ngb2*T2)
190 Kag(K)=(Rho*K14Gp*Kg)/(1..Gp) INPUT COVARIANCE
200 NEXT K
210 A11l.'A A>0 REQUIRED
220 FOmnf=PI
230 Flinf=FNFlinC(A,Gp)
240 F2i nf=.25*PI*(1. +Gp)*(1. +Gp)
250 Af(0)1I.
260 FOR K=1 TO 40
270 J=K
280 Af(K)=T=C(K-)*tK IAM('K!
290 IF T<Tolerance THEN 320
300 NEXT K
310 PRINT "40 TERMS IN AC(*)"
320 FOR K=0 TO 3*2
330 C(K)=TK*A14Gp
340 SqCK)1I.'SQRCT)
350 N4EXT K
360 FOR K0O TO Ntc
370 Tc(K)=Tc=K*Dtc I Tau-
380 CALL Myc(Rc,Tc,A,Gp,Wlb2,Wgb2,0. ,FOCK),FICK),F2CK))
390 NEXT K
400 MAT FO=FO-(FOlnf)
410 MAT F1=F1-(F1inC)
420 MAT F2=F2-(F2inf)
430 MAT FO=FO'(FO(0))
440 MAT F1=FI'(F1(0))
450 MAT F2=F2'(F2(0))
460 PRINT "INFINITY:l";FOinf;Flinf;F2inf'
470 PRINT "MINIMA: "';MIN(FO(*) ) ;MIN(FI (*)) ;MIN(F2(*))
480 PRINT "AT Ntc: ";FO(Ntc);F1(Ntc);F2(Ntc)
490 CREATE DATA "AITI",98
500 ASSIGN 01 TO "AITI"
510 PRINT #1;Kag(*)
520 CREATE DATA "AOTO",98
530 ASSIGN #1 TO "AOTO"
540 PRINT *1;F0(*)
550 CREATE DATA "IAOTI"1,8
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560 ASSIGN #1 TO "ROTI"
570 PRINT #I;F1(*)
580 CREATE DATA "AOT2",8
590 ASSIGN #1 TO "AOT2"

600 PRINT #1;F2(*)
610 ASSIGN #1 TO *
620 Tcmax=Dtc*Ntc
630 GINIT 200/260
640 PLOTTER IS 505,"HPGL"
658 PRINTER IS 505
660 LIMIT PLOTTER 505,0,200,0,260
670 VIEWPORT 22,85,19,122
680 WINDOW 8.,1.,8.,I.
690 PRINT "VS5"
700 GRID .25,.25
710 PRINT "VS36"
720 PLOT Tc(*),Kag(*)
730 PENUP
740 PLOT Tc(*),FO(*)
750 PENUP
760 PLOT Tc(*),FI(*)
770 PENUP
780 PLOT Tc(*),F2(*)
790 PENUP
888 PAUSE
810 PRINTER IS CRT
820 PLOTTER 505 IS TERMINATED
830 END
840
850 DEF FNFlinC(R,Gp) ! for v(=nu) = 1
860 Tol=I.E-18
870 Rg=A*Gp
880 T=I.
890 S=SR(1.+Rg)
900 FOR M=2 TO 100
910 T=T*R/M
920 P=T*SQR(M+Rg)
930 S=S+P
940 IF P<S*Tol THEN 970
950 NEXT M
960 PRINT "100 TERMS IN FNFlinf"
970 T=Gp+R*S*S+2.*SQR(Ag)*S
980 RETURN EXP(-2.*A)*T
990 FNEND
1000
1018 SUB Bnu(Y,B8,BIB2) 1 Bv(Y) for v=0,1,2
1020 IF Y>1. THEN PRINT "Y = 1 +";Y-1.
1030 IF Y>1. THEN Yi.
1040 Y2=Y*Y
1050 Sq=SQR(1.-Y2)
1060 T=ASN(Y)+1.5707963267948966
1070 BO=T+T
1080 BI=Y*T+Sq
1090 B2=(.5 Y2)*T+1.5*Y*Sq
1100 SUBEND
1110 I
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1120 SUB Mlyfc CRc, Tc , A, Gp, W I b2, W~gb2, Lg2, so, s i ,32
1130 CoNl AC(*),C(*),SqC*>
1140 CON DOUBLE J INTEGER
1150 ALLOCATE ApC0:J),AplCO:J)
1160 DOUBLE K,M1,M2,N,KI,K'2 INTEGERS
1170 AI=1./A A>8O REQUIRED
1180 T2=.S*Tc*Tc
1190 R2=Rc*Rc
1200 K1=EXP(-R2--Wlb2*T2)
1210 KQ=EXPC-Lg2*R2-14gb2*T2)
1220 Ak=A1*K1
1230 Gk=Gp*Kg
1240 Rho=MAX(0.,1.-ABSCTc)) IRho
1250 Rhol=1.-Rho
1260 Ap(0)ARpl(0)=Pk=Pkll1.
1270 FOR K=1 TO J
1280 Pk=Pk*Rho
1290 Pkl=Pkl*Rhul
1300 T=AfCK)
1310 ApCK)=T*Pk
1320 Ap1CK)=T*Pkl
1330 NEXT K
1340 50r1=S1m1S2m10o.
1350 FOR M1=0 TO J
1360 50m2=S1rn28S2m2=0.
1370 FOR M12=0 TO J
1380 sen=Sln=S2n=0.
1398 FOR H=0 TO J
1400 K1=N+M1
1410 K2=N+N2
1420 T=Ap(N)
1430 P=C(K1)*CCK2)
1440 Y=(N*Ak+Gk>*Sq(K1)*S CK2)
1450 CALL Bnu(Y,BO,B1,B2)
1460 SOn=SOn+T*B0
1478 Sln=Sln+T*SQRCP)*D1
1480 S2n=S2n+T*P*B2
1490 NEXT N
1500 T2ARp1(N2)
1510 S0m2=S0M2+T2*SOl
1520 Slr251rn2+T2*Sln
1530 S2r2=S2m2*T2*S2n
1540 NEXT M12
1550 T1ARp1(M1)
1560 SOml=S~ml+T1*SOm2
1570 Sll=Slml+T1*Slm2
1580 S2rrlS2ml+TI*S2u2
1590 NEXT M1
1600 T=EXPC-A*(2.-Rho))
1610 SO=T*SOnl
1620 S1=T*SIm1
1630 S2=T*S2nl
1640 SIJEEND
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APPENDIX A.2 - EVALUATION OF COVARIANCE FUNCTION

FOR ZERO DELAY (f,f' - 0)

A program for the numerical evaluation of covariance
A .

M (AR,t) for ff - 0 is contained in this appendix. Inputs
2

required of the user are A, ri, (AL/AG) , 6(AR), N(AR), in lines

20 - 60. The tolerance for terminating the triple infinite sums

is set at 1E-15 in line 70. The output from the program is

stored in data files AORO, AOR1, AOR2, for v = 0, 1, 2,

respectively. Other relevant comments are made in appendix A.1.
A .%

The limit of M at AR = (when f = 0) is given by the closedy
form results

for v = 0

c(m,0= for v = 1 (A.2-1)

flj1+ (l+ r) 2 1 forv=2

4 A A

These values have been subtracted from My so that we can Bessel

transform a function which tends to zero as AR 4 =.

10 Tc=O. ! Tau-
20 A=.2 i A(subR)
30 Gp=.001 I GRMMR'(subR)
40 Lg2=5. I (DeIL/DeIG)^2
50 Drc=.005 1 INCREMENT IN DeIR ^

60 Nrc=900 1 NUMBER OF DeIR ^ VALUES
70 Tolerance=1.E-15
88 COM Af(8:40),C(8:80),Sq(0:80)
90 COM DOUBLE J INTEGER
180 DIM Rc<e:900),Kag<0:900),FO(O:900),FI(0:900),F2(0:900)
110 DOUBLE NrcK ! INTEGERS
120 AI=I./A 1 A>O REQUIRED
130 FOinf=PI ! LIMITS FOR
140 Flinf=1.+Gp I Rc=infinitV
150 F2inf=.25*PI*((1.+Gp)*(1.+Gp)+A1) I AND Tc=O
160 Af(O)=1.
170 FOR K=1 TO 40
180 J=K
190 Rf(K)=T=Rf(K-1)*H/K ! A^K/K!
200 IF T<Tolerance THEN 230
218 NEXT K
220 PRINT "40 TERMS Iti Rf(*)"
230 FOR K-e TO J*2
240 C(K)=T=K*1+Gp
250 Sq(K)=t./SQR(T)
260 NEXT K
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270 FOR K=0 TO Nrc
280 Rc(K)=Rc=K*Drc i DeIR ^

290 R2=Rc*Rc
300 KI=EXP(-R2)
310 Kg=EXP(-Lg2*R2)
320 Rho=MAX(0.,I.-ABS(Tc)) 1 Rho
330 Kag(K)=(Rho*Kl+Gp*Kg)/(l.+Gp) ! INPUT COVARIANCE
340 CALL MVc(Rc,TcA,Gp,O.,O.,Lg2,FO(K),FI(K),F2(K))
350 NEXT K
360 MAT FO=FO-(FOinf)
370 MAT FI=F1-(Flinf)
380 MAT F2=F2-(F2inf)
390 MAT FO=FO/(FO(O))
400 MAT FI=FI/(FI(O))
410 MAT F2=F2/(F2(0))
420 PRINT "INFINITY:l";FOinf;Flinf;F2inf
430 PRINT "MINIMA: " ;MIN(FO(*)); MIN(Fl (*));MIN(F2(*) )
440 PRINT "AT Nrc: ";FO(Nrc);Fl(Nrc);F2(Nrc)
450 CREATE DATA "AIR1",33
460 ASSIGN #1 TO "AIRI"
470 PRINT #1;Kag(*)
480 CREATE DATA "AORO",33
490 ASSIGN #1 TO "AORO"
500 PRINT #1;FO(*)
510 CREATE DATA "AOR1",33
520 ASSIGN #1 TO "RORI"
530 PRINT #1;F1(*)
540 CREATE DATA "AOR2",33
550 ASSIGN #1 TO "AOR2"
560 PRINT #1;F2(*)
570 ASSIGN #1 TO *
580 Rcmax=Drc*Nrc
590 GINIT 200/260
600 PLOTTER IS 505,"HPGL"
610 PRINTER IS 505
620 LIMIT PLOTTER 505,0,200,0,260
630 VIEWPORT 22,85,19,122
640 WINDOW 0.,3.,0.,1.
650 PRINT "VS5"
660 GRID .5,.25
670 PRINT "VS36"
680 PLOT Rc(*),Kag(*)
690 PENUP
700 PLOT Rc(*),FO(*)
710 PENUP
720 PLOT Rc(*),F1(*)
730 PENUP
740 PLOT Rc(*),F2(*)
750 PENUP
760 PAUSE
770 PRINTER IS CRT
780 PLOTTER 505 IS TERMINATED
790 END
800 1
810 SUB Bnu(Y,BO,BI,B2) I Bv(Y) for v=0,1,2
820 ! SEE APPEN4DIX A.1
900 SUBEND
910 I
920 SUB Myc(RcTcA,Gp,Wlb2,Wgb2,Lg2,SOSi,S2)
930 1 SEE APPENDIX A.1
1440 SUBEND
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APPENDIX A.3 - EVALUATION OF TEMPORAL INTENSITY

SPECTRUM FOR ZERO SEPARATION (AR = 0)

A program for the numerical evaluation of the Fourier

transform of covariance My (0,f) - My (-) is contained in this

appendix. Inputs required of the user are listed in lines

10 - 30. The data input, AOTO or AOT1 or AOT2, as generated by

means of the program in appendix A.1, is injected by means of

lines 410, 600, and 790.

In order to keep the FFT (fast Fourier transform) size, N in

lines 30 and 320, at reasonable values, the data sequence is

collapsed, without any loss of accuracy, according to the method

given in [8; pages 7 - 8] and [9; pages 13 - 16]. The

integration rule documented here is the trapezoidal rule; this

procedure is very accurate and efficient and is recommended for

numerical Fourier transforms.

18 Ntc=200 ! NUMBER OF Tau- VALUES
20 Dtc=.Ol I INCREMENT IN Tau ^

30 N=1024 1 SIZE OF FFT; j, > Ntc REQUIRED
40 DOUBLE Ntc,N,N4,N2,Ns I INTEGERS
50 N4=N/4
60 N2=N/2
70 REDIM Cos(O:N4),X(O:N-I),Y(8:N-I)
80 DIM Cos(256),X(1823),Y(1823),A(2O0)
90 T=2.*PI/N

108 FOR Ns=O TO N4
110 Cos(Ns)=COS(T*Ns) I QUARTER-COSINE TABLE IN Cos(*)
120 NEXT Ns
130 GINIT 208/260
140 PLOTTER IS 505,"HPGL"
150 PRINTER IS 505
160 LIMIT PLOTTER 505,0,280,8,260
170 VIEWPORT 22,85,19,122
188 WINDOW 0,N2,-5,1
190 PRINT "VS5"
200 GRID N/10,1
210 PRINT "VS36"
220 ASSIGN #1 TO "AITI"
230 READ #1I;A(*)
240 MlAT X=(O.)
258 MAT Y=(O.)
?60 X(O)=.5*A(0)
270 FOR Ns=1 TO Ntc-1
280 X(Ns)=A(Ns)
290 NEXT Ns
300 X(Ntc)=.5*A(Ntc)
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310 MAT X=X*(Dtc*4.)
320 CALL Fi't14(N-,Cos(*),X(*),Y(*)>
330 FOR Ns=0 TO N2
340 ArX(Ns)
350 IF Ar>8. THEN 380
360 PENUP
370 GOTO 398
380 PLOT Ns,LGT(Ar)
390 N4EXT Ns
400 PENUP
410 ASSIGN #1 TO "AOTO"
420 READ #1;A(*)
430 MAT X=(0.)
440 MAT VuCO.)
450 X(0)=.5*ACO)
460 FOR Ns=1 TO Ntc-1
470 X(Ns)=A(Ns)
480 NEXT Ns
490 X(Ntc)=.5*A(Ntc)
500 MAT X=X*(Dtc*4.)
510 CALL Fftl4(N,Cos(*),X(*),Y(*))
520 FOR Ns=O TO N2
530 Ar=X(Ns)
548 IF Ar>0. THEN 570
550 PENUP
560 GOTO 580
570 PLOT Ns,LGT(Ar)
580 NEXT Ns
590 PENUP
600 ASSIGN #1 TO "AOT1"
610 READ #1;A(*)
620 MAT X=(0.)
630 MAT Y=(0.)
640 X(0)=.5*A(0)
650 FOR Nsl1 TO Ntc-1
660 X(Ns)AR(Ns)
670 NEXT Ns
680 XCNtc)a.5*A(Ntc)
690 MAT X=X*(Dtc*4.)
708 CALL Fft 14(N,Cos(*),X(*),YC*))
710 FOR Hs=O TO N2
720 Ar=X(Ns)
738 IF Ar>0. THEN 760
740 PENUP
758 GOTO 778
768 PLOT Ns,LGT(Ar)
770 NEXT Ns
780 PENUP
790 ASSIGN #1 TO "AOT2"
880 READ #1;A(*)
810 MAT A=A'(A(0))
820 MAT X(0.)
830 M1AT Y(0. )
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840 X(O)=.5*A(O)
850 FOR Hs=l TO Ntc-1
860 X(Ns)=A(Ns)
876 NEXT Ns
880 X(Ntc)=.5*A(Ntc)
890 MAT X=X*(Dtc*4.)
906 CALL FftI4(N,Cos(*),X(*),Y(*))
916 FOR Ns=0 TO N2
920 Rr=X(Ns)
930 IF Ar>O. THEN 960
940 PENUP
956 GOTO 976
966 PLOT Ns,LGT(Ar)
970 NEXT Ns
988 PENUP
990 PAUSE
1000 END
1610
1020 SUB Fft14(DOUBLE N,REAL Cos(*),X(*),Y(*)) 1 4<=2A14=16384; 0 SUBS
1036 DOUBLE Log2n,N1,N2,N3,N4,J,K ! INTEGERS < 2t31 = 2,147,483,648
1640 DOUBLE II,12,13,14,15,16,17,18,19, 110,III,I12,113,114,L(0: 13)
1050 IF N=1 THEN SUBEXIT
106 IF N>2 THEN !146
1670 A=X(6)+X(1)
1086 X(1)=X()-X(1)
1090 X()=A
1100 A=Y(8)+Y(1)
1110 Y(1)=Y(6)-Y(1)
1120 Y()=A
1130 SUBEXIT
1140 A=LOG(N)/LOG(2.)
1156 Log2n=A
1160 IF ABS(A-Log2n)<I.E-8 THEN 1196
1176 PRi;iT "N =";N;"IS NOT A POWER OF 2; DISALLOWED."
1186 PAUSE
1190 N1=N/4
1200 N2=Nl+l
1210 N3=N2+1
1220 N4=N3+NI
1230 FOR 11=1 TO Log2n
1240 12=2A(Log2n-I1)
1250 13=2*12
1260 14=N/13
1270 FOR 15=1 TO 12
1280 16=(15-1)*14+1
1296 IF 16<=N2 THEN 1330
1300 A1=-Cos(N4-16-1)
1310 ^i2=-Cos(16-NI-1)
1326 GOTO 1356
1330 R1=Cos(16-1)
1340 R2=-Cos(N3-16-1)
1350 FOR 17=0 TO N-13 STEP 13
1360 I8=17+15-1
1370 19=18+12
1380 TI=X(18)
1390 T2=X(19)
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1400 T3=Y(I8)
1410 T4=Y(19)
1420 A3=TI-T2
1430 A4=T3-T4
1440 X(18)=TI+T2
1450 Y(18)=T3+T4
1460 X(19)=AI*A3-A2*A4
1470 Y(19)=AI*A4+R2*R3
1480 NEXT 17
1490 NEXT 15
1500 NEXT II
1510 ll=Log2n+l
1520 FOR 12=1 TO 14
1530 L(12-1)=1
1540 IF 12>Log2n THEN 1560
1550 L(12-1)=2.'(II-12)
1560 NEXT 12
1570 K=O
1580 FOR II=1 TO L(13)
1590 FOR 12=11 TO L(12) STEP L(13)
1600 FOR 13=12 TO L(II) STEP L(12)
1610 FOR 14=13 TO L(10) STEP L(II)
1620 FOR 15=14 TO L(9) STEP L(10)
1630 FOR 16=15 TO L(S) STEP L(9)
1640 FOR 17=I6 TO L7) STEP L(8)
1650 FOR 18=17 TO L(6) STEP LM)
1660 FOR 19=18 TO L(5) STEP L(6)
1670 FOR 110=19 TO L(4) STEP L(5)
168n FOR III=I10 TO L(3) STEP L(4)
1690 FOR 112=111 TO L(2) STEP L(3)
1700 FOR 113=112 TO L(1) STEP L(2)
1710 FOR 114=113 TO L(O) STEP L(1)
1720 J=114-1
1730 IF K>J THEN 1800
1740 A=X(K)
1750 X(K)=X(J)
1760 X(J)=R
1770 A=Y(K)
1780 Y(K)=Y(J)
1790 Y(J)=R
1800 K=K+1
1810 NEXT 114
1820 NEXT 113
1830 NEXT 112
1840 NEXT 111
1850 NEXT 110
1860 NEXT -9
1870 NEXT 18
1880 NEXT 17
1890 NEXT 16
1900 NEXT 15
1910 NEXT 14
1920 NEXT 13
1930 NEXT 12
1940 NEXT I
1950 SUBEND

58



TR 8887

APPENDIX A.4 - EVALUATION OF WAVENUMBER INTENSITY

SPECTRUM FOR ZERO DELAY (ff' = 0)

A program for the numerical evaluation of the zeroth-order
Bessel transform of covariance H y(AR,0) - (-y() is contained in

this appendix. Inputs required of the user are listed in lines
10 - 40 and are coupled to appendix A.2, where the data input,
AORO or AOR1 or AOR2, was generated. The numerical Bessel

transform is accomplished by means of Simpson's rule with end
correction [11; pages 414 - 418], and is exceedingly accurate for
the small increment, .005, in AR employed in line 30.

10 Dkc=.4 INCREMENT IN k-
20 Nkc=200 NUMBER OF k VALUES
30 Drc=.005 INCREMENT IN DeIR ^

40 Nrc=900 NUMBER OF DeIR ^ VALUES
50 DOUBLE Nrc,Nkc,I,Ns INTEGERS
60 REDIM C(B:Nrc)
70 REDI WiJ(0:Nkc),WO(0: Hkc), 1(0:Nkc),W2(0:Nkc)
80 DIM C(900),Wi(200),WO(200),Wl(200),W2(200)
90 ASSIGN #I TO "AIRI"
100 READ #1;C(*)
110 FOR 1=0 TO Nkc
120 Kc=I*Dkc k^

130 T=Kc*Drc
140 Se=So=O.
150 FOR Ns=1 TO Nrc-1 STEP 2
160 So=So+Ns*FNJo(T*Ns)*C(Ns)
170 NEXT Ns
180 FOR Ns=2 TO Nrc-2 STEP 2
190 Se=Se+Ns*FNJo(T*Ns)*C(Ns)
200 NEXT Ns
210 Wi(I)=C(O)+16.*So+14.*Se
220 NEXT I
230 MAT Wi=Wi*(Drc*Drc*2.*PI/15.)
240 ASSIGN #i TO "AOR8"
250 READ #1IC(*)
260 FOR 1=0 TO Nkc
270 Kc=I*Dkc
280 T=Kc*Drc
290 Se=So=O.
300 FOR Ns=1 TO Nrc-i STEP 2
310 So=So+Ns*FNJo(T*Ns)*C(Ns)
320 NEXT Ns
330 FOR Ns=2 TO Nrc-2 STEP 2
340 Se=Se+NH*FNJo(T*Ns)*C (0s)
350 N4EXT Ns
360 WO(I)=C(9)+16.*So+14.*Se
370 NEXT I
380 MAT WO=WO*(Drc*Drc*2.*PI/15.)
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390 ASSIGN #1 TO "RORI"
400 READ #1;C(*)
410 FOR I=0 TO Nkc
420 Kc=I*Dkc
430 T=Kc*Drc
440 Se=So=O.
450 FOR Ns=l TO Nrc-i STEP 2
460 So=So+Ns*FJo(T*Ns)*C(Ns)
470 NEXT Ns
480 FOR Ns=2 TO Nrc-2 STEP 2
490 Se=Se+s*FJo(T*Ns)*C(Ns)
500 NEXT Ns
510 Wi(I)=C(O)+16.*So+14.*Se
520 NEXT I
530 MAT Wi=Wl*(Drc*Drc*2.*PI/15.)
540 ASSIGN #1 TO "AOR2"
550 READ #I;C(*)
560 ASSIGN #1 TO *
570 FOR I=0 TO Nkc
580 Kc=I*Dkc
590 T=Kc*Drc
600 Se=So=O.
610 FOR Ns=l TO Nrc-i STEP 2
620 So=So+Ns*FNJo(T*Ns)*C(Ns)
630 NEXT Ns
640 FOR Ns=2 TO Nrc-2 STEP 2
650 Se=Se+Ns*FNJo(T*Ns)*C(Ns)
660 NEXT Ns
670 W2(1)=C(O)+16.*So+I4.*Se
680 NEXT I
690 MAT W2=W2*(Drc*Drc*2.*PI/15.)
700 GINIT 200/260
710 PLOTTER IS 505,"HPGL"
720 PRINTER IS 505
730 LIMIT PLOTTER 505,0,200,0,260
740 VIEWPORT 22,85,19,122
750 WINDOW 0,Nkc,-9,1
760 PRINT "VS5"
770 GRID 25,1
780 PRINT "VS36"
790 FOR 1=0 TO Nkc
80 W=Wi(J)
810 IF W>O. THEN 840
820 PENUP
830 GOTO 850
840 PLOT I,LGT(W)
850 NEXT I
860 PENUP
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870 FOR 1=0 TO Nkc
880 W=WO(I)
890 IF 14>0. THEN 920
900 PENUP
910 GOTO 930
920 PLOT I,LGT(W)
930 NEXT I
940 PENUP
950 FOR 1=0 TO Nkc
960 14=11(1)
970 IF 14>0. THEN 1000
980 PENUP
990 GOTO 1010

1000 PLOT I,LGT(N)
1010 NEXT I
1820 PENUP
1030 FOR 10O TO Nkc
1040 14=12(I)
1050 IF 14>0. THEN 1080
1060 PENUP
1070 COTO 1090
1080 PLOT 1,LGT(14)
1090 NEXT I
1100 PENUP
1110 PAUSE
1120 PRINTER IS CRT
1130 PLOTTER 505 IS TERMINATED
1140 END
1150
1160 DEF FNJoCX) JoCX) FOR ALL X
1170 Y=ABS(X)
1180 IF Y(>8. THEN 1280
1190 T=Y*Y ! HART, #5845
1200 P=2271490439.5536033-T*(5513584.5647707522-T*5292.6171303845574')
1210 P=2334489171877869.7-T*(47765559442673.588-T*(46217c2250311803-T*P., )
1220 P=185962317621897804. -T*(44145829391815982. -T*P)
1230 Q=204251483.52134357+T*(494030.79491813972+T*(884.72036756175504+Tfl
1240 Q=2344750013658996.8+T*(15015462449769.752+T*(64398674535. 133256+T*Q").
1250 Q=185962317621897733. +T*Q
1260 Jo=P'Q
1270 RETURN Jo
1280 Z=8./Y IHART, #6546 & 6946
1290 T=Z*Z
1300 Pn=2204.5010439651804+T*(128.67758574871419+T*.9004793474802803)
1310 Pn=8554. 8225415066617+T*(8894. 4375329606194+T*Pn)
1320 Pd=2214.0488519147104+T*(130.88490049992388+T)
1330 Pd=8554.8225415866628+T*(8903.8361417095954+T*Pd)
1340 Qn=13.990976865960680*T*(1.0497327982345548+T*.009352-'595S2940319)
1350 Qn=-37.510534954957112-T*(46.093826814625175+T*Qn)
1360 Qd=921.56697552653090+T*(74.428389741411179+T)
1370 Od=2400.6742371172675+T*<2971.9837452084920tT*Od)
1380 T=Y-. 78539816339744828
1390 3o=.23209479177387820*SQR(Z)*(COS(T)*Pl/Pd-SINl(T)C*r,/Od)
1400 RETURN Jo
1410 FNEN4D
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APPENDIX A.5 - EVALUATION OF PHASE MODULATION INTENSITY SPECTRUM

The normalized covariance function for phase modulation is

given by (2.50) in the main text, namely

ko 0 exp[- r, p2 [1 - exp(- )] - A[2 - p( )] + (A.5-1)

2

+ 2A [1- p(t)] exp -ip/A) + A p( ) exp(- - [1 - exp(-bi)]fl

for , 1 0, where t is the time delay and p(r) is the temporal

normalized covariance of the field process. Also p = 2

Since (A.5-1) involves an exponential of an exponential of an

exponential, and because a wide range of parameter values are of

interest, care must be taken in numerical evaluation of this

covariance and its transform.

Observe first that

k (0) = 1 since p(O) = I . (A.5-2)

Also, as delay C 4 +-, then p 4 0, giving

k (-) = exp[-rA p~ 2- 2A + 2A exp(-p 2/A)] 0 0 (A.5-3)

The spectrum of interest is given by

Wo(w ) = 4 f dC cos(wC) k(0  ) for w Z 0 ; = 2nf . (A.5-4)

0

The nonzero value of (A.5-3) at C = - leads to an impulse in

spectrum Wa(w) at w - 0. This limiting value, k0 (-), must be

subtracted from covariance (A.5-1) prior to the numerical

Fourier transform indicated by (A.5-4).
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For r, p << 1, the term

exp(- r ,2 (1 - exp(-)]) (A.5-5)

approaches its limiting value at t = +, as follows:

exp(- q~ P4 -[ exp(-r )- exp(- PP/4

= exp(- r PP4 exp[rA i4 exp(-(r)- iA =

- exp(- r P r P2 exp(- ) . (A.5-6)

This is a fairly rapid decay with t and will not lead to

numerical difficulty when r, p2 <<
2 APFor large bp /A, the term

2

exp - [1 - exp(-b)] (A.5-7)

is very sharp near Z = 0; in fact, it is given approximately by

2

exp(- -- bt) for Z near 0 . (A.5-8)

Therefore, we define the sharp component of covariance ko () as

2
ks (t) = exp[- A + A exp(- -E b-)] - exp(-A) for all (A.5-9)

Then

k s(0) = 1 - exp(-A) , ks(w) = 0 . (A.5-10)
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Now we let

k o() = [k0 (i,) - ks (Z)] + k s) =

- kf( ) + ks(Z) , (A.5-11)

where kf() is a flat function near C - 0. Then we can express

the desired difference as

ko(r ) - k0 (-) = [kf(Z) - ko(-)] + ks(Z) -

* kl( ) + ks(Z) , (A.5-12)

where functions kl( ) and ks(4) both decay to 0 at , - m. We now

employ two separate FFTs on each of the functions in (A.5-12).

The sharp component, ks (?), must be sampled with a very small

increment, A4, when bp2/A is large. On the other hand, the flat

component

kl(Z ) - kf(4) - ko(-) (A.5-13)

can be sampled in a coarser fashion. Finally, if bp2/A is

moderate, we work directly with ko0 (4) - k0 (-) without breaking

it into any components.

Two programs are furnished in this appendix, one for moderate

bp/A, and the other for the flat component (A.5-13) when bp /A

is large. For sake of brevity, the Fourier transform of the

sharp component (A.5-9) is straightforward and is not presented.

The particular covariance p(Z) adopted is triangular,

p(K) - 1 - L for 1I < ' 0 otherwise , (A.5-14)

but can easily be replaced. The parameter tc is the cutoff value

of covariance p(C).
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The number of samples, N, taken of the covariance, in order

to perform the FFT of (A.5-4), is rather large, so as to

guarantee a very small value of truncation error at the upper end

of the integral, despite the small increment A4. In order to

keep the FFT size, Mf, at reasonable values, the data sequence is

collapsed without any loss of accuracy according to the method

given in [8; pages 7 - 8] and [9; pages 13 - 16]. The

trapezoidal rule is used to approximate the integral in (A.5-4),

for reasons given in [8; appendix A].

10 SPECTRUM FOR PHASE MODULATION - MODERATE
20 Mup=1. I MUsubP
30 Gp=.001 I Gamma'
40 Bs=1. I b
50 A=.2 A
60 Zc=2.*PI Rho(Z) = 0 for IZIZc; >Z eta
70 Delz=.005 Zeta increment
80 1=60000 I Maximum number of samples of kof(zeta)
90 Mf=16384 I Size of FFT
100 DOUBLE N,Mf,MS,1 S INTEGERS
I10 DIM X(16384),Y(16384),Cos(4096)
120 REDIM X(O:M-1),Y(O:Mf-1),Cos(0:Mf'/4)
130 MAT X=(O.)
140 MAT Y=(O.)
150 T=2.*PI/Mf
160 FOR Ms=O TO Mf/4
170 Cos(Ms)=COS(T*Ms) QUARTER-COSINE TABLE
180 NEXT Ms
190 Ta=Gp*Mup*M4up
200 IF A=0. THEN 220
210 Tb=Mup*Mup/A
220 Tc=2.*A*FNExp(Tb)
230 Kinf=FNExp(Ta+2.*A-Tc) CORRELATION AT INFINITY
240 COM A,Bs,Zc,Ta,Tb,Tc,Kinf
250 T=l.-Kinf
260 PRINT 0,T
270 X(O)=T*.5 TRAPEZOIDAL RULE
280 FOR Ns=l TO N
290 Corr=FNKo(Ns*Delz) I CORRELATION ko(zeta)
300 IF Hs<6 THEN PRINT Ns,Corr
310 IF ABS(Corr)<.E-30 THEN 350
320 Ms=NHs MODULO Mf COLLAPSING
330 X(Ms)=X(Ms)+Corr
340 NEXT Ns
350 PRINHT "Final val LAe of Corr " ;Corr;" IIs = I I

360 MAT X=X*(Delz*4.)
370 CALL Fft14(M,Cos(*), X(*),Y(*))
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388 GINIT
390 PLOTTER IS "GRAPHICS"
400 GRAPHICS ON
410 WINDOW -2,2,-60,0
420 LINE TYPE 3
430 GRID 1,10
440 LINE TYPE I
450 Delf=l./(Mf*Delz)
460 FOR Ms=l TO Mf/2
470 F=Ms*Delf 1 FREQUENCY
480 PLOT LGT(F),10.*LGT(X(Ms))
490 NEXT Ms
500 PENUP
510 PAUSE
520 END
530
540 DEF FNExp(Xminus) I EXP(-X) WITHOUT UNDERFLOW
550 IF Xminus>708.3 THEN RETURN 0.
560 RETURN EXP(-Xminus)
570 FNEND
580
590 DEF FNKo(Zeta) CORRELATION ko(zeta)
600 COM A,Bs,Zc,Ta,Tb,Tc,Kinf
610 Rho=MAX(O., 1.-Zeta/Zc) I TRIANGULAR RHO
620 EI=Ta*(I.-FNExp(Zeta))
630 E2=Tb*(1.-FNExp(Bs*Zeta))
640 E3=A*Rho*FNExp(E2)
650 RETURN FNExp(E1+A*(2.-Rho)-Tc*(1.-Rho)-E3)-Kinf
660 FNEND
670
680 SUB Fft14(DOUBLE N,REAL Cos(*),X(*),Y(*)) ! N<=2A14=16384; 0 SUBS
690 1 SEE APPENDIX A.3

10 1 SPECTRUM FOR PHASE MODULATION - FLAT COMPONENT
20 Mup=l. I MUsubP
30 Gp=.001 I Gamma'
40 Bs=l. I b
50 A=O. I A
60 Zc=2.*PI Rho(Z) = 0 for IZI>Zc; Z=zeta
70 Delz=.005 I Zeta increment
80 N=60000 I Maximum number of samples of kl(zeta)
90 Mf=16384 I Size of FFT
100 DOUBLE N,Mf,Ms,Ns ! INTEGERS
110 DIM X(16384),Y(16384),Cos(4096)
120 REDIM X(O:Mf-1),Y(O:Mf-1),Cos(O:Mf/4)
130 MAT X=(O.)
i40 nHT Y=(#.'
150 T=2.*PI/Mf
160 FOR Ms=O TO Mf/4
170 Cos(Ms)=COS(T*Ms) I QUARTER-COSINE TABLE
180 NEXT Ms
190 TauGp*Mup*Mup
200 IF A=0. THEN 220
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210 Tb=MUp*MUp/A
220 Tc=2.*A*FNExp(Tb)
230 Tb=5.E55
240 1'i nf=FNExp(Ta+2. *A-Tc) CORRELATION AT INFINITY
250 Ea=FNExp(A)
260 Tbb=Tb*Bs
270 COM A,Bs,Zc,Ta, Tb,Tc,KinfEa, Tbb
280 T=1.-Kinf-(1.-Ea) ! SUBTRACT SHARP COMPONENT
290 PRINT 0,T
300 X(O)=T*.5 I TRAPEZOIDAL RULE
310 FOR Ns=l TO N
320 CorrFNK 1(Ns*Delz) CORRELATION I:kl(zeta)
330 IF Ns<6 THEN PRINT Ns,Corr
340 IF ABS(Corr)<I.E-30 THEN 380
350 Ms=Ns MODULO Mf COLLAPSING
360 X(Ms)=X(Ms)+Corr
370 NEXT Ns
380 PRINT "Final value of Corr =";Corr;" Ns =";Ns
390 MAT X=X*(Delz*4.)
400 CALL Fft14(Mf,Cos(*),X(*),Y(*))
410 GINIT
420 PLOTTER IS "GRAPHICS"
430 GRAPHICS ON
440 WINDOW -2,2,-60,0
456 LINE TYPE 3
460 GRID 1,10
470 LINE TYPE 1
480 Delf=l./(MC*Delz)
490 FOR Ms=1 TO Mf/2
500 F=Ms*Delf I FREQUENCY
510 T=X(Ms)
520 IF T>O. THEN 550
530 PENUP
540 GOTO 560
550 PLOT LGT(F),10.*LGT(T)
560 NEXT Ms
570 PENUP
580 PAUSE
590 END
600
610 DEF FNExp(Xminus) I EXP(-X) WITHOUT UNDERFLOW
620 IF Xminus>708.3 THEN RETURN 0.
630 RETURN EXP(-Xminus)
640 FNEND
650 1
660 DEF FNK1(Zeta) I CORRELATION kl(zeta)
670 COM R,Bs,Zc,Ta, Tb,Tc,KinC,Ea, Tbb
680 Rho=MAX(0.,1.-Zeta/Zc) I TRIANGULAR RHO
690 E1=Ta*(1.-FNExp(Zeta))
700 E2=Tb*(1.-FNExp(Bs*Zeta))
710 E3=A*Rho*FIIExp(E2)
720 E4=FNExp(Tbb*Zeta)
730 Sharp=FNExp(A*(1.-E4))-Ea I ks(zeta)
740 RETURN FNExp(E1+A*(2.-Rho)-Tc*(1.-Rho)-E3)-Kinf -Sharp
750 FNEND
760
770 SUB Fftl4(DOUBLE N,REAL Cos(*),X(*),Y(*)) ! I 1-'2t14=16384; 0 SUBS
780 I SEE APPENDIX A.3
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APPENDIX A.6 - EVALUATION OF FREQUENCY MODULATION

INTENSITY SPECTRUM

The normalized covariance function for frequency modulation

is given by (2.48) in the main text, namely

ko(<) = exp r , i2 [exp(-Z) + i - 1] - A[2 - P() +

2

+ A p(,) exp(- L±-2 [exp(-bl) + b - 1])] for 2 0 , (A.6-1)
Ab

where t is the time delay and p(C) is the temporal normalized
2 2

covariance of the field process. Also, F FG and

b = A/Aw N. Since (A.6-1) involves an exponential of an

exponential of an exponential, and because a wide range of

parameter values are of interest, care must be taken in numerical

evaluation of this covariance and its transform.

Observe that

k0 (0) = 1 , because p(O) = 1 . (A.6-2)

Also, as delay < 4 +-, then p 4 0, giving

k ( ) - exp(- r ,4 ( - 1) - 2A) kl( ) for > 0 . (A.6-3)

This term, kl(Zj, decays slowly with < if r, pk << 1

The spectrum of interest is given by

Wo(w) = 4 f di cos(w ) k (a) for w Z 0 ; = 2nf . (A.6-4)

0

The spectrum corresponding to the limiting component, kl(7) in

(A.6-3), is directly available in closed form as
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Wl(w) - 4 f d cos(wt) kl(I) -

0

exp(r 2 - 2A) A F (A.6-5)
FpP 2)F +'W22

If r 2 1, this latter quantity is large and very sharply

peaked at w - 0; hence, this term has been subtracted out and

handled separately when rA PF << 1. The residual covariance,

ko( ) - kl(i), then decays very rapidly with C and is easily

handled directly by means of an FFT. This breakdown is not

necessary when rA P 2 1 and is avoided, then, by handling

k o(C) directly in one FFT.0 2
For pF/A >> 1, the term

2

exp(- - [exp(-bC) + bt. - i] (A.6-6)
Ab

inside the exponential in (A.6-1) behaves like

2

exp :F . C2 near C - 0 , (A.6-7)

where its major sharp contribution arises. For example, if

PF - 50, A - 1, then increment A - .005 leads to values for

(A.6-7) of

exp(-0.156 n2 ) at , - n A , (A.6-8)

which is adequately sampled in order to track its dominant

contribution; the actual sequence of values is 1, .856, .536,

.247, .083. For smaller p2F/A, this sampling interval is more

than adequate.
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Two programs are furnished in this appendix, one each for the

cases of large and small r, 2i

adopted is triangular,

p(R) = 1 - u for I, < , 0 otherwise , (A.6-9)

but can easily be replaced. The parameter Zc is the cutoff

covariance value and is specified numerically in the examples in
figures 3.9a through 3.10b.

10 SPECTRUM FOR FREQUENCY MODULATION - LARGE Gp*Mv'.2
20 Muf=5O. MUsubF
30 Gp=.001 ! Gamma,
40 Bs=t. 1 b
50 A=.2 A A
60 Zc=2.*PI Rho(Z) = 0 for IZI>Zc; >zeta
70 Delz=.005 I Zeta increment
80 N=60000 Maximum number of sample-- of ko(zeta)
90 Mf=16384 I Size of FFT

100 DOUBLE NMf,Ms,Ns INTEGERS
110 DIM X(16384),Y(16384),Cos(4096)
120 REDIM X(B:Mf-1),Y(0:Mf-1),Cos(0:Mf/4)
130 MAT X=(B.)
140 MAT Y=(B.)
150 T=2.*PI/Mf
160 FOR Ms=O TO Mf/4
170 Cos(Ms)=COS(T*Ms) 1 QUARTER-COSINE TABLE
180 NEXT Ms
190 Ta=Gp*Muf*Muf
200 IF A=0. THEN 220
210 Tb=Muf*Muf/(A*Bs*Bs)
220 Tc=FNExp(2.*R-Ta)*Ta
230 Td=Ta*Ta
240 COM A,Bs,Zc,Ta,Tb
250 X(0)=.5 I TRAPEZOIDAL RULE
260 FOR Ns=1 TO N
270 Corr=FNKo(Ns*Delz) I CORRELATION ko(zeta)
280 IF Corr<1.E-20 THEN 320
290 Ms=Ns MODULO Mf I COLLAPSING
300 X(Ms)=X(Ms)+Corr
310 NEXT Ns
320 PRINT "Final "alue of Corr =";Corr;" Ns =";Ns
330 MAT X=X*(Delz)
340 CALL FftI4(MfCos(*),X(*),Y(*))

71



TR 8887

350 GINIT
360 PLOTTER IS "GRAPHICS"
370 GRAPHICS ON
380 WINDOW -4,2,-70,30
390 LINE TYPE 3
400 GRID 1,10
410 LINE TYPE 1
420 Delf=l./(Hf*Delz)
430 FOR s=l TO M,2
440 F=Ms*Delf '  FREQUENCY
450 T=X(Ms)
460 IF T>O. THEN 490
470 PENUP
480 GOTO 500
490 PLOT LGT(F),10.*LGT(T)
500 NEXT Ms
510 PENUP
520 Add=X(O)-Tc/Td i OPIGI. C-DPRECTIO8
530 F=1.E-4
540 FOR Ns=l TO 100
550 W=2.*PI*F
560 WI=Tc/(Td+W*W)
570 T=W1+Add
580 IF T>0. THEN 610
590 PENUP
600 GOTO 620
610 PLOT LGT(F),10.*LGT(WI+Add)
620 F=F*I.1 I FREQUENCY
630 IF F>Delf THEN 650
640 NEXT Ns
658 PENUP
660 PAUSE
670 END
680 i
690 DEF FNExp(Xminus) ! EXP(-X) WITHOUT UNDERFLOW
700 IF Xminus>708.3 THEN RETURN 0.
710 RETURN EXP(-Xminus)
720 FNEND
730 i
740 DEF FNKo(Zeta) ! CORRELATION ko(zeta)
750 CON A,Bs,Zc,Ta,Tb
760 E1=FNExp(Zeta)+Zeta-1.
770 T=Bs*Zeta
780 E2-FNExp(T)+T-1.
790 Rho=MAX(8.,l-Zeta/Zc) ! TRIANGULAR RHO
800 T=Ta*EI+A*(2.-Rho)-A*Rho*FNExp(Tb*E2)
818 RETURN FNExp(T)
820 FNEND
830
840 SUB FftI4CDOUBLE N,REAL Cos(*),X(*),Y(*>) N<=2-14=16384; 0 SUES
850 SEE APPENDIX A.3

72



TR 8887

10 SPECTRUM FOR FREQUENCY MODULATION - SMALL Gp*Muf" -2
20 Muf=l. I MUsubF
30 Gp=.001 Gamma'
40 Bs=l. I b
50 A=.2 A
60 Zc=2.*PI Rho(Z) = 0 for IZI>Zc; Z=zeta
70 Delz=.005 Zeta increment
80 N=10000 Maximum number of sample.s of ko zeta)
90 Mf=8192 Size of FFT

100 DOUBLE N,Mf,M ,Ns INTEGERS
110 DIM X(8192'),Y(8192),Cos(2048)
120 REDIM X(O:Mf-1),Y(O:Mf-I),Cos(O:Mf/4)
130 MAT X=(O.)
140 MAT Y=(O.)
150 T=2.*PI/Mf
160 FOR Ms=O TO Mf/4
170 Cos(Ms)=COS(T*Ms) I QUARTER-COSINE TABLE
180 NEXT Ms
190 Ta=Gp*Muf*Muf
200 IF A=0. THEN 220
210 Tb=Muf*Muf/(A*Bs*Bs)
220 T=FNExp(2.*A-Ta)
230 Tc=T*Ta
240 Td=Ta*Ta
250 Delf=.l*Ta/(2.*PI) I INCREMENT IN FREQUENCY
260 COM R,Bs,Zc,Ta,Tb
270 X(0)=.5*(I.-T) I TRAPEZOIDAL RULE
280 FOR Ns=1 TO N
290 Corr=FNKol(Ns*Delz) I CORRELATION ko(zeta)-kI(zeta)
300 IF ABS(Corr)<.E-30 THEN 340
310 Ms=Ns MODULO Mf I COLLAPSING
320 X(Ms)=X(Ms)+Corr
330 NEXT Ns
340 PRINT "Final value of Corr =";Corr;" Ns =";Ns
350 MAT X=X*(Delz)
360 CALL Fft14(Mf,Cos(*),X(*),Y(*))
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370 GINIT
380 PLOTTER IS "GRAPHICS"
390 GRAPHICS ON
400 WINDOW -4,2,-70,30
410 LINE TYPE 3
420 GRID 1,10
430 LINE TYPE 1
440 FOR Ms~l TO 2000
450 F=Ms*Del C FREQUENCY
460 W=2.*PI*F
470 W1=Tc/(Td+W*W) SHARP SPECTRAL COMPONENT
480 T=Mf*Delz*F
496 Ns=INT(T)
500 Fr=T-Ns
510 W2=Fr-*X(M<<l:+1)+(1.-Fr)*X(Ns) BROAD SPECTRAL COMPONENT
520 PLOT LGT(F),10.*LGT(W.1+W;>-
530 NEXT Ms
546 NsEMAX(Ns, 1)
550 FOR Ns=Ns TO Mf'/2
560 F=Ms/(MCf*Delz) FREQUENCY
570 W=2.*PI*F
580 W1=Tc/(Td+W*W,)
596 W=X(Mls)
600 T=W1.W2
610 IF T>0. THEN 640
620 PENUP
630 GOTO 650
640 PLOT LGT(F),10.*LGT(T)
650 NEXT Ms
660 PENUP
670 PAUSE
680 END
690
700 DEF FNExp(Xminus) IEXP(-X) WITHOUT UNDERFL':W
710 IF Xmiius>708.3 THEN RETURN 0.
720 RETURN EXP(-Xminus)
730 FNEND
740
750 DEF FNKo1(Zeta) ICORRELATION ko(zeta)-k1I(zeta>
760 COM A,Bs,Zc,Ta,Tb
7716 E1=FNExp(Zeta)+Zeta-1.
780 T=B~*Zeta
790 E2=FNExp(T.+T-1.
800 kho=MAX(0.,1-Zeta/Zc) !TRIANGULAR RHO
810 T=Ta*E1+A*(2.-Rho)-AI*Rh-o*FNIExp(Tb*E2)
820 RETURN FM-Exp1(T)-FMlExp(Ta*(Zeta-1. )tL'*F)

0.0 F ENT)
840
850 SUB Fft14(DOUBLE N,REAL CosW*,X(:',Y(*))! N,=2'14=163E4; 0 SUBS.
860 ISEE APPENDIX A.3

74



TR 8887

REFERENCES

[1] D. Middleton, An Introduction to Statistical Communication

Theory, McGraw-Hill Book Company, Inc., New York, NY, 1960.

Also, Reprint Edition, Peninsula Publishing Co., P.O. Box 867,

Los Altos, CA, 1987.

[2] D. Middleton, "Second-Order Non-Gaussian Probability

Distributions and Their Applications to "Classical" Nonlinear

Signal Processing Problems in Communication Theory," to be

submitted to IEEE Transactions on Information Theory, 1991.

(This is a considerably expanded version of [3] ff.)

[3] D. Middleton, "Second-Order Non-Gaussian Probability

Distributions and Their Applications to Classical Nonlinear

Processing Problems," Proceedings of 20th Conference on

Information Sciences and Systems, pages 394-400, March 19-21,

1986, Princeton University, NJ.

[4] D. Middleton, First- and Second-Order Gauss-Composite

Processes, with Applications to Ambient and Scatter Noise,

in preparation, 1991.

[5] D. Middleton, "Canonical and Quasi-Canonical Probability

Models of Class A Interference," IEEE Transactions on Electro-

magnetic Compatibility, volume EMC-25, number 2, May 1983.

[6] A. H. Nuttall, I. B. Cohen, and D. Middleton, Performance

Parameters for Quasi-Canonical Class A Non-Gaussian Noise;

Source Distribution Law p - 0, Propagation Law y - 2,

NUSC Technical Report 7715, Naval Underwater Systems Center,

New London, CT, 15 June 1986.

75



TR 8887

[7] D. Middleton, "Channel Modeling and Threshold Signal

Processing in Underwater Acoustics: An Analytical Overview,"

IEEE Journal Oceanic Engineering, volume OE-12, number 1, pages

4-28, January 1987.

[8] A. H. Nuttall, Accurate Efficient Evaluation of Cumulative

or Exceedance Probability Distributions Directly From

Characteristic Functions, NUSC Technical Report 7023, Naval

Underwater Systems Center, New London, CT, 1 October 1983.

[9] A. H. Nuttall, "Alternative Forms and Computational

Considerations for Numerical Evaluation of Cumulative Probability

Distributions Directly from Characteristic Functions,"

Proceedings IEEE, volume 58, number 11, pages 1872-1873, November

1970. Also in NUSC Report Number NL-3012, Naval Underwater

Systems Center, New London, CT, 12 August 1970.

[10] Handbook of Mathematical Functions, U. S. Department of

Commerce, National Bureau of Standards, Applied Mathematics

Series Number 55, U. S. Government Printing Office, Washington,

DC, June 1964.

(11] C. Lanczos, Applied Analysis, Third Printing, Prentice-

Hall, Inc., Englewood Cliffs, NJ, 1964.

[12] J. A. Mullen and D. Middleton, "The Rectification of

Non-Gaussian Noise," Quarterly Journal of Applied Mathematics,

volume XV, number 4, pages 395-419, January 1958.

76


